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Abstract—The relation between composite right/left handed 

transmission lines (CRLH TL) and lumped element Chebyshev 

filters is discussed in this paper. A CRLH TL in the balanced 

case can be regarded as the central part of a low-ripple high-

order Chebyshev band-pass filter (BPF). The balanced case of 

the CRLH TL is automatically satisfied in the mapping from a 

prototype Chebyshev low-pass filter (LPF) to a BPF.  Moreover, 

once the ending sections are take into consideration, both a 

better impedance matching is achieved as well as a reduction of 

the large ripples close to the cut-off frequencies for a finite length 

CRLH TL. Therefore, a CRLH TL in the balanced case may be 

designed from a Chebyshev filter exhibiting an improved 

performance. 

I. INTRODUCTION 

In the last years, metamaterial structures [1] have found a 

wide interest. A homogeneous negative index transmission 

line (TL) or left-handed (LH) transmission line does not exist 

in nature. It has to be approached by an artificial structure 

which is usually constructed from a series of discontinuous 

sections operating in a restricted frequency range. A typical 

realization is found in a quasi-lumped transmission line with 

elementary cells consisting of a series capacitor and a shunt 

inductor [2]. As in practice, the normal shunt capacitance and 

series inductance cannot be avoided, the concept of the 

composite right/left-handed transmission line (CRLH TL) was 

developed, and a number of novel applications have been 

demonstrated [2 - 6].  

Fig. 1 shows the equivalent circuit of such a transmission 

line (connected to a source and a load). Without the right-

handed elements (e.g. L1 and C2 or Lj and Ck), such a circuit 

looks like a highpass filter, and the complete CRLH TL like a 

band-pass filter (of typically high order). 
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Fig. 1 CRLH TL’s LC circuit model 

 

A conventional filter, on the other hand, is generally not a 

uniform structure. Looking, however, at the filter coefficients 

gi of a Chebyshev filter, it can be seen that such a filter with 

high order exhibits a highly periodic central section; in the 

limiting case, it can be considered as a periodic structure with 

matching sections at both ends (see Fig. 2). 

In this paper, we therefore compare the design of CRLH 

TLs and of Chebyshev filters of high order. It is proved that a 

CRLH TL can be considered as a part of a Chebyshev filter. 

Thus, if we design a CRLH TL based on classical filter theory, 

a better performance of a finite length section can be achieved. 

To this end, we firstly summarize the characteristic formulas 

of a CRLH TL. Secondly, we analyse the design formulas for 

a Chebyshev band-pass filter with a similar characteristic and 

prove that the central section of a Chebyshev band-pass filter 

is identical to a CRLH TL. By attaching the ending sections of 

the filter, a finite length CRLH TL with better performance is 

achieved. 

II. CRLH TL IN THE BALANCED CASE 

The equivalent circuit model of a CRLH TL is a cascaded 

network as shown in Fig. 1 which consists of series 

inductance (L) and capacitance (C) resonators alternating with 

shunt LC resonators. Both source and load resistance are Z0. 

Since the arrangement is a periodic structure, those LC 

components are 

 
, , for series resonators

, , for shunt resonators

j R j R

k L k L

L L C C

L L C C

= =


= =
 (1) 

where the subscript L and R denotes LH and right handed 

(RH), respectively. In a balanced CRLH TL, there is no 

frequency band gap between the RH and LH region, and it 

provides better impedance matching over a broader frequency 

range as well. The balanced condition of the CRLH TL is [3, 4] 

 L R R LL C = L C . (2) 

The transition angular frequency between LH and RH 

region is 

 0 Se Sh= ω = ωω  (3) 

where
1

Se

R L

=
L C

ω and
1

Sh

L R

=
L C

ω are the resonant  
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frequencies of the series LC circuit and the shunt LC circuit, 

respectively. The equivalent characteristic impedance ZE of a 

CRLH TL in the balanced case is 

 

 
Z E= Z L= Z R  (4) 

where L
L

L

L
Z =

C
 and R

R
R

L
Z =

C
 are the pure LH and RH 

characteristic impedances which are frequency independent 

with the homogenous TL approach. Assuming an infinitely 

long CRLH TL, the lower and higher cut-off frequencies are 

 

 

1 1

1 1

L
cL R

R

L
cR R

R

ω
= ω +

ω

ω
= ω + +

ω

ω

ω

  
− 

  


 
   

 (5) 

 

where 
1

L

L L

=
L C

ω and
1

R

R R

=
L C

ω are the resonant 

frequencies of the LH and RH LC circuit, respectively. From 

Eq. (2), (3) and (5), the relation between transition 

frequency and cut-off frequencies is 

 2
0

1
cL cR L R

L R L R

= ω ω = ω ω =
L L C C

ω  (6) 

 

which is similar to that of a BPF. While 0cL < ω < ωω , the 

CRLH TL is dominantly LH, and while 0 cR< ω < ωω , it is 

dominantly RH. 

Considering the degree of freedom in the CRLH TL 

design with periodical elements, there are four independent 

parameters, namely LL, CL, LR, and CR. When the balanced 

condition is applied, there are only three independent 

parameters left. Once two cut-off frequencies (as well as the 

transition frequency) and the characteristic impedance ZE 

(matching to the system impedance Z0) are fixed, a unique 

CRLH TL configuration is determined based on Eq. (2) to (6) 

as 

 

0
0 0

0

0
0

0 0

1
2

1 2

R
L cR cL

R
L cR cL

L Z
C

C
L Z

ω
ω

ω ω ω

ω
ω

ω ω ω


= = −


 = =
 −

 (7) 

 

When a mismatch between the characteristic impedance of a 

balanced CRLH TL and the system impedance occurs, 

matching circuits have to be implemented between the CRLH 

TL and the source or load. The matching circuit can be a 

tapered microstrip line, which is quite long and increases the 

insertion loss. 

III. CHEBYSHEV BAND-PASS FILTER 

An N
th

 order band-pass filter (BPF) in principle has the 

same LC circuit model as that of the CRLH TL in Fig. 1 (in 

this section, odd order Chebyshev filters are considered; even 

order filters are shortly discussed in section IV). The BPF 

design is usually achieved from the low-pass to band-pass 

transformation, in which a low-pass prototype filter is applied. 

The mapping formulas can be found in [7] with
 

0
0 j 0

0 2 1

0
0 k

0 k 2 1 0

1
for series resonators

1
for shunt resonators

j
j

k

L = g Z
C ω

g
C

L ω ω Z

ω
ω

ω ω

ω
ω

ω


= −


 = =
 −

 (8) 

 

where ig is the i
th

 element value (either the inductance or the 

capacitance) in a prototype LPF, 1ω  and 2ω are the lower 

and higher cut-off frequencies, respectively, and 

0 1 2ω = ωω  is the central frequency of the BPF. Z0 is the 

system impedance. Once these parameters are fixed, the BPF 

is uniquely determined. From Eq. (8), it can be obtained 

 
2
0

1
j j k kL C L C

ω

= =  (9) 

Eq. (9) is equivalent to Eq. (2) and (3), which means that 

the balanced condition of a CRLH TL always holds in BPF 

design. Since the mapping formula of Eq. (8) is a generic 

formula, it may be applied to other kinds of prototype LPF as 

well. Thus the balanced case of a CRLH TL is automatically 

realized in BPFs from any kind of prototype LPF with series 

and shunt LC resonators that are built from the mapping 

formula Eq. (8). Butterworth, Gaussian, or Chebyshev BPFs 

with any passband ripple constructed from Eq. (8) will satisfy 

the balanced condition of a CRLH TL. In most prototype 

LPFs, the element values gi usually vary in a certain range and 

lead to a non-periodic structure. The central section of a high 

order Chebyshev filter, however, has a periodical structure 

and is very close to a CRLH TL. Fig. 2 shows an example of a 

21
st
 order Chebyshev prototype LPF with different pass-band 

ripples. For elements not close to either end, the element 

values are periodical. It should be noted that always two 

adjacent filter elements form one equivalent TL cell, thus the 

central part of a Chebyshev is really a periodic structure, 

independently of the ripple. 

A. Low Pass-Band Ripple 

As shown in Fig. 2, the lower the pass-band ripple, the 

smoother are the element values. In the limiting case, the 

values of the central elements are close to 2ig ≈ . Moreover, 

the higher the filter order, the better is the approach to a 

periodic structure. When the pass-band ripple in a Chebyshev 
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BPF is low enough and its order high enough, it can be proved 

theoretically or shown numerically that the filter element 

values are =2ig  for all elements that are not close to either 

filter end.  
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 Fig. 2 Element values of 21st order Chebyshev prototype LPFs 

 

When the element value is 2, Eq. (7) and Eq. (8) will 

have the same form. Thus, when the Chebyshev BPF and the 

CRLH TL have the same cut-off frequencies ( 1 cLω ω= , 

2 cHω ω= ) and system impedance Z0, they will own the same 

LC circuit determined by Eq. (7) and Eq. (8), respectively. 

This implies that once three parameters (two cut-off 

frequencies and the matching impedance) are fixed, the 

corresponding CRLH TL in the balanced case and the central 

part of the corresponding high order Chebyshev BPF with low 

pass-band ripple have identical LC configurations. 

B. High Pass-band Ripple 

With higher pass-band ripple in a Chebyshev prototype 

LPF, the element values oscillate instead of approaching a 

constant 2ig ≈  (Fig. 2). It can also be proved that the values 

of central elements switch between two fixed values. For 

those elements, the element value of series and shunt 

resonators keep constant as seg  and shg  alternatively, and 

4se shg g⋅ =  always holds. Thus, a high-ripple Chebyshev 

BPF is a periodic configuration as well. In fact, it is also a 

kind of the CRLH TL in a balanced case, as will be discussed 

in section IV.  

Once two cut-off frequencies and the system impedance 

are given, a uniform CRLH TL in the balanced case and a 

high order Chebyshev BPF with low pass-band ripple can be 

uniquely implemented with LC circuit, respectively. The 

CRLH TL and the central part of the Chebyshev BPF own the 

same periodical LC structures. In other words, a uniform 

CRLH TL in the balanced case can be considered a part of 

a high-order low-ripple Chebyshev BPF with the same cut-

off frequencies and system impedance. 

 

IV. IMPEDANCE MATCHING AND PASS-BAND RIPPLE 

The image impedance has more general meanings than its 

definition with respect to the characteristic impedance of a 

uniform TL [7]. From the image impedance method, the 

characteristic impedance of a balanced CRLH TL is 

 
2

1
4

L
E R

R

ε ω
Z = Z

ω
−  (10) 

where 0

0

ω ω
ε =

ω ω
− . Eq. (10) shows that the characteristic 

impedance ZE is frequency dependent, as shown in Fig. 3. 

Thus, only around the transition frequency, Eq. (4) can be 

obtained. This indicates that impedance matching circuits 

should be applied to finite length CRLH TLs for better 

performance. 

Z
0

0

Z
E

ω
0

ω
ω

cR
ω

cL

|S
11

|=-10dB

 

Fig. 3 Characteristic impedance of CRLH TL 

 

When the pass-band ripple in a Chebyshev prototype LPF 

is high, the values of central elements are alternatively 

2jg α=  and 
2

kg
α

=  for series and shunt element, and α is 

a positive constant. If Z0 in Eq. (8) is replace by αZ0, it is still 

a well designed CRLH TL. Therefore, the pass-band ripple 

corresponds to the difference between the applied and 

designed system impedance of Chebyshev BPF. The greater 

the difference is, the higher is the pass-band ripple. Based on 

the element value analysis of a high-order Chebyshev 

prototype LPF, the relation between the pass-band ripple and 

the impedance difference is 

 

1

2

11 10=coth sinh 10 1
2

Ar

ses

sh

L
g

=
g

α

−

−

 
  
  −   

  
 

 (11) 
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where ArL is the pass-band ripple in dB, 
Designed
0

Applied
0

Z

Z
α = the 

ratio of the applied and designed impedances, and the sign 

function 

Desinged Applied
0 0

Desinged Applied
0 0

1

1

+ Z > Z
s

Z Z

 ∀
= 

− ∀ <
. Whenα is 1, there 

is no ripple in pass-band. Once α is given, the pass-band 

ripple can be obtained easily. For example, if the applied 

system impedance is 50Ω and the characteristic impedance of 

a CRLH TL 70Ω, the corresponding pass-band ripple in a BPF 

will be 0.4827 0.5dBArL dB= ≈ . 

When the applied and designed impedances are different, 

matching circuits are necessary. Even in the matched situation, 

it is required to improve the overall pass-band performance as 

well. Besides the tapered line matching method, another 

method is to utilize the classical filter design techniques. Since 

a CRLH TL is proved to be equivalent to the central part of a 

Chebyshev BPF, the impedance matching sections between 

the CRLH TL and the source or load can be constructed from 

the corresponding BFP design. This procedure is equivalent to 

the design of an entire filter and automatically results in good 

performance. Broadband impedance matching is realized 

easily, while the unwanted high ripples close to the cut-off 

frequencies are reduced and distributed to the whole pass-

band smoothly. It is a classical and stable method, which 

provides much better performance in either the LH or RH 

region. 

In the situation that even order Chebyshev filters are 

concerned, the load impedance, which is only dependent on 

the pass-band ripple and independent on the filter order, is 

always different from the source impedance. However, when 

the pass-band ripple is small, the load impedance is very close 

to the source impedance. Therefore, there is not much 

difference between filter element values of even order and odd 

order, when the pass-band ripple is low and the order is high. 

On the other hand, when the pass-band ripple is high, the 

difference between even order and odd filters is located only 

in several elements near the load, which can be understand as 

an impedance matching circuit. With respective to even order 

Chebyshev filters, the analysis in this paper is also suitable. 

V. CONCLUSIONS 

The characteristics of CRLH TLs (a kind of negative 

refractive index TL) and high order Chebyshev BPFs are 

analysed, and synthesis formulas based on matching 

impedance and cut-off frequencies are shown. From the 

analysis of element values in Chebyshev prototype LPF, the 

relation between CRLH TL and Chebyshev BPF is revealed. It 

is proved that a CRLH TL - in the balanced case - is the 

central part of a high-order low pass-band ripple Chebyshev 

BPF with identical matching impedance and cut-off 

frequencies. 

 

The meaning of pass-band ripple in a Chebyshev BPF, 

which has no obvious counterpart in a CRLH TL, corresponds 

to the mismatch between the characteristic impedance of the 

CRLH TL and the system impedance. The formula to compute 

pass-band ripple from impedance mismatch is presented. In 

addition, impedance matching circuits in CRLH TL 

applications can be design based on classical filter theory to 

achieve much better performance. 

The other way round, a CRLH TL can be designed from a 

Chebyshev BPF. By allowing a reasonable pass-band ripple, 

there is more design freedom, and with respect to impedance 

matching, the design from classical filter theory can achieve 

smooth broadband responses. 

First examples for such an approach have already been 

presented in [6] and [8] where sections of a CRLH TL have 

been realized as band-pass filters to design antennas with 

backfire-to-endfire scanning. 
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